邮  箱:cuiyong@xmu.edu.cn

职称/职务:教授 博士生导师


  • 个人简介
  • 科研领域
  • 代表性成果


B.S. 2009, Wuhan University, Biology;
M.S. 2011, The Chinese University of Hong Kong, Biology;
Ph.D. 2014, The Chinese University of Hong Kong, Biology;
Postdoctoral Fellow, School of Life Sciences, The Chinese University of Hong Kong, 2014-2020;
Professor, School of Life Sciences, Xiamen University, 2020 to Present.


(1) 植物细胞和分子生物学
(2) 植物蛋白质运输和细胞器生成
(3) 植物生物反应器表达药用蛋白质
(1) Plant Cell and Molecular Biology
(2) Protein Trafficking and Organelle Biogenesis in Plant Cells
(3) Plant Bioreactors for Pharmaceutical Proteins
Our research interests are organelle biogenesis and vesicle trafficking in plants. All plant cells contain an endomembrane system with functionally distinct membrane-bound organelles, including the endoplasmic reticulum (ER), Golgi apparatus, trans-Golgi network (TGN), multivesicular body (MVB), autophagosome and vacuole. These organelles are generated accurately and efficiently in a well-organized way so as to exert their essential functions in protein transport, plant growth and responses to the environment. On one hand, we use plant cell biological, genetic, biochemical approaches in combination with 3D electron tomography technique to investigate key genes that regulate organelle biogenesis and vesicle trafficking under developmental and stressful conditions in plants, in the hope of providing novel insights for stress resistance in agriculture. On the other hand, we are also actively developing and using plant organelles (such as the vacuole and the ER) as bioreactor compartments to express and store target recombinant proteins, with further analysis on their physicochemical properties and biological activities.

20700app大阳城下载:代表性论文(# co-first author, * Corresponding author):

1.Cui, Y.*, Gao, J., He, Y., and Jiang, L.* (2020). Plant extracellular vesicles.Protoplasma, 257, 3-12.

2.Cui, Y.*, Cao, W., He, Y., Zhao, Q., Wakazaki, M., Zhuang, X., Gao, J., Zeng, Y., Gao, C., Ding, Y., Wong, H.Y., Wong, W.S., Lam, H.K., Wang, P., Ueda, T., Rojas-Pierce, M., Toyooka, K., Kang, B.-H., and Jiang, L*. (2019). A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells.Nature Plants,5, 95-105.

3.Zhao, Q.1, Shen, J.1, Gao, C.1,Cui, Y.1, Wang, Y., Cui, J., Cheng, L., Cao, W., Zhu, Y., Huang, S., Zhou, Q., Leong, C.K., Leung, P., Chen, X., and Jiang, L.* (2019). RST1 is a FREE1 suppressor that negatively regulates vacuolar trafficking in Arabidopsis.Plant Cell,31, 2152-2168. (1Co-first Authors).

4.Cui, Y.*, Zhuang, X.*, Shen, J.*, Gao, C.*, and Jiang, L.* (2019). Organelle biogenesis and function in plants. SCIENTIA SINICA Vitae,49, 1679–1694.

5.Cui, Y.*, He, Y., Cao, W., Gao, J., and Jiang, L.* (2018). The multivesicular body and autophagosome pathways in plants.Frontiers in Plant Science, 9, 1837.

6.Cui, Y., Zhao, Q., Xie, H.T., Wong, W.S., Wang, X., Gao, C., Ding, Y., Tan, Y., Ueda, T., Zhang, Y., and Jiang, L.* (2017). MONENSIN SENSITIVITY1 (MON1)/CALCIUM CAFFEINE ZINC SENSITIVITY1 (CCZ1)-mediated Rab7 activation regulates tapetal programmed cell death and pollen development in Arabidopsis.Plant Physiology, 173, 206-218.

7.Zhuang, X.1, Chung, K.P.1,Cui, Y.1, Lin, W., Gao, C., Kang, B.H., Jiang, L.* (2017). ATG9 regulates autophagosome progression from the endoplasmic reticulum in Arabidopsis. Proc. Natl. Acad.Proc. Natl. Acad. Sci. USA 114, E426-E435. (1Co-first Authors).

8.Cui, Y., Shen, J., Gao, C., Zhuang, X., Wang, J., and Jiang, L.* (2016). Biogenesis of Plant Prevacuolar Multivesicular Bodies.Molecular Plant, 9, 774-786. (Cover Article).

9.Cui, Y.*, Gao, C., Zhao, Q., and Jiang, L.* (2016). Using fluorescent protein fusions to study protein subcellular localization and dynamics in Plant CellMethods in Molecular Biologyt, DOI: 10.1007/978-1-4939-6352-2_7.

10.Zhuang, X.1,Cui, Y.1, Gao, C., and Jiang, L.* (2015). Endocytic and autophagic pathways crosstalk in plants. Curr. Opin.Current Opinion in Plant Biology, 28, 39-47. (1Co-first Authors).

11.Cui, Y., Zhao, Q., Gao, C., Ding, Y., Zeng, Y., Ueda, T., Nakano, A., and Jiang, L.* (2014). Activation of the Rab7 GTPase by the MON1-CCZ1 Complex Is Essential for PVC-to-Vacuole Trafficking and Plant Growth in Arabidopsis.Plant Cell, 26, 2080-2097.

12.12.Cui, Y.*, Zhao, Q., Hu, S., and Jiang, L.* (2020). Vacuole biogenesis in plants: how many vacuoles, how many models?Trends in Plant Science, 25, 538-548.